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Abstract---A numerical technique to determine the singular behavior of the solution of Cauchy 
singular integral equations (CSIE) with variable coefficients is proposed. The fundamental solution, 
which is a solution of the corresponding homogeneous equation, is constructed by a quadrature- 
collocation scheme. This leads to a system of nonlinear equations to approximate the exponents of 
singularity. Newton's method has been found to yield a useful approximation to these exponents. 
Once we have numerically obtained the weight function which determines the behavior of the solution 
of Cauchy singular integral equation, it can be used to solve a variety of nonhomogeneous CSIE with 
variable coefficients. 
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1. I N T R O D U C T I O N  

Singular integral equations with a Cauchy principal value arise frequently in mixed boundary 
value problems for partial differential equations. In many of these problems, auxiliary functions 
may have singularities of a prescribed nature. Often these equations are not amenable to a closed 
form solution. For such equations, a prior knowledge of singular behavior is helpful in devising 
appropriate numerical integration schemes. The classical theory for such integral equations is 
based on the properties of sectionally holomorphic functions (functions which are analytic in a 
complex plane cut along a line segment). However, there is no analogous theory to deal with 
multidimensional integral equations. This paper attempts to augment the classical theory by 
suggesting a numerical approach to the problem of finding the singular behavior near the end- 
points of a slit by developing the technique of numerical integration proposed by Srivastav [1] for 
Canchy singular integral equations with constant 'coefficients' to those with variable coefficients. 
Only the one-dimensional integral equation is discussed here. Without loss of generality we may 
take the domain for integration and the equation as (-1, 1). 

Our approach is pretty simple. Since the dominant singularity is at the endpoints, we express 
the fundamental function (also called the weight function) as 

w(x) = (1 - xF(x)(1  + x) q(x) 

We then replace the integral by Gauss-Chebyshev and Lobatto-Chebyshev quadrature formulae. 
Collocation at an appropriate set of nodes then leads to a nonlinear system of algebraic equations 
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for the values of p(x) and q(x). We solve this system of equations using a Newton-Raphson 
method. This weight function is then used to solve the integral equation using well-known 
techniques. 

Since Gaussian quadrature in the limit is the Riemann sum, one would expect the technique 
to converge even when the HSlder continuity condition is violated. 

The paper is organized in 6 sections as follows: the fundamental solution for variable coefficient 
CSIE is constructed as an exponentiation form in Section 2. A nonlinear equations system is built 
to determine the singular behavior of the solution numerically by the Gauss-Lobatto-Chebyshev 
method in Section 3. Newton's method has been found to yield a useful approximation to the 
exponential representation of the weight function, as described in Section 4. The numerical 
examples are presented in Section 5. Section 6 contains concluding remarks. 

2. T H E  F U N D A M E N T A L  S O L U T I O N  F O R  
V A R I A B L E  C O E F F I C I E N T  C S I E  

A Cauchy-type singular integral equation has the form 

I f a(x)¢(x) + b(x___~) 1 ¢(t)d___._~t + k(x, t)¢(t)dt = f(x),  0 < x < 1. (1) 
7C l t - - x  1 

Here, a(x), b(x), k(x, t), f(x) are known real functions, and ¢(x) is the unknown function. 
Following [2], we assume that a(x) and b(x) axe HSlder continuous on [-1, 1], and likewise k(x,t) 
is H51der continuous in each variable on [-1, 1]. We require also that a2(x) + b2(x) never vanish 
on (-1,  1). 

Solutions to equation (1) are sought in the space H* of functions H51der continuous in every 
closed subinterval of (-1, 1). Functions with a singularity at the endpoints 4-1 are admissible 
as solutions. We shall assume that the singularity is a weak singularity, i.e., the functions are 
integrable in the usual sense. The integral term containing k(x, t) does not effect the nature of 
singularity at the endpoints. The qualitative behavior is the same as that of the homogeneous 
equation 

a ( x ) ¢ ( x )  + = 0, - 1  < x < 1. (2)  
J-1 x 

Let 
= - ib( ) 

a(x) + ib(x)" 

The fundamental solution 1 Z(x) of equation (2) is now expressible as 

( 1  / 1  arg G(t) dt) " (3) 
Z ( z ) = ( 1 - x )  ~ l ( l + x )  ~2exp ~ 1 t - x  

Here, 

In G(t) = In [G(t)[ + i arg G(t), -~r < arg G(t) < r, 

-1  In G(-1), OL1 ~ ~"~/ 

1 
a2 = ~ In G(1), 

-1  < aj  + Aj < 1, Aj are integers, X = -(A1 + As), X is called the index of the equation (1). 
When a(x) and b(x) are both constants, Z(x) may be expressed as 

(1 - + x V  - 1 .  

1Numerical integration is in general not useful at this stage. 
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As a first step to determine the singular behavior of the solution of the CSIE’s with variable 

coefficients, we find a similar expression for the fundamental solution. 

THEOREM 1. The fundamental solution of the homogeneous equation can be written in the form 
of Z(Z) = (1 - Z)+)(l +.)-x-p@). 

PROOF. Let 

Obviously, 

C(X) = _J_ ( J 

’ argG(t) 

-dt) (In(E)) 27T -1 t-z 

We obtain 

Z(x) = (1 - xpp + xp z ( > 
4x1 

( 

so that we have 

P(X) = Al + c(x), -x -p(x) = x2 - c(x). 

The proof is complete. 

The singular behavior of the solution is determined by function p(s). 

- 

(4 

1 

(5) 

I 

3. NUMERICAL DETERMINATION 
OF FUNDAMENTAL FUNCTION 

We now derive algebraic equations to find an approximation to p(x) numerically. While we 

use a different quadrature formula, in principle, it, is the same as that of Srivastav [l]. We seek 

functions p(x) which satisfy the equation 

l 
a(x)(l - x)+)(1 +x)_ - x P(Z) + b(z) J (1 - t)p@)(1 + t)-x--p@) dt = o 

n. -1 t-x (6) 

If we use the Gauss-Chebyshev quadrature formula and collocation at the zeros of U,+.~(S) for 

equation (6), we get for j = 1,2, . . . , n - 1 the system of (n - 1) nonlinear equations: 

PC%) + qsj) n (1 + tk)l-x 

,-’ tk-S’ 
k=l 3 

(7) 

Here {tk), {sj} are zeros of T, ( CC) and U,,_ 1 (x) , respectively. 

Similarly, using the Lobatto-Chebyshev quadrature formula and collocation at the zeros 

of Tn(x), we get, for n = 1,2, . . . , n, 

dtk) 

Combining the equations systems (7) and (8), we get (2n - 1) nonlinear equations about (2n - 1) 

unknown {p(sj), p(tk)}, which may be written in the vector form as 

F(P) = 0, (9) 

where 
T 

P = (P(Sl),P(S2),... ,p(s,-l>,p(tl),p(tz),...,p(tn>> ’ 
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4. N E W T O N ' S  M E T H O D  F O R  T H E  N O N L I N E A R  E Q U A T I O N S  

To solve this nonlinear equation system (9), we use the standard Newton's method 

) ( )  DP p(O A p ( O = _ F  p(O , p(~+l) = p(0 + Ap(0,  (10) 

where i -- 0, 1 , . . . ,  are the Newton iterative steps, and 

c1 al 1 • • • al n 
• . " • • 

J On-1 an-1 1 • • • an-ln 
bll  . . .  bln-1 dl 

: " , .  " , .  

bn 1 ... bn n-1 dn 
/ 1 - - S  "\p(s~) ~ l - - s j ~  

c j = a ( s j ) ( l + s ~ ) - x ( "  °~]  In 
\ l + s j ]  \ l + s j ] '  

( 1 -  tk~P(tk' in ( 1 - -  tk ~ 
dk = a(tk)(1 + tk) -x  \ 1  + t a /  \ l - - - ~ k / '  

ajk -~ ~ t k -- 8j k l--~k,] In \ 1 -{- t k , ] '  

bkj = b(tk)(1 + sj) ' - x  ~1 -- sj ~P(s~)+'5 / 1  _ sj 
s j - t k  \ l - '~s~]  In \ 1  + s j / "  

DF ( p ( 0 )  
DP 

(11) 

(12) 

(13) 

(14) 

(15) 

In her Ph.D. Thesis, Li [3] has shown that  Newton's method converges 2 quadratically for 
each n. Our computational experience indicates that  as n is increased, the discrete solution gets 
closer to the analytical solution when known. 

5. N U M E R I C A L  E X A M P L E  

Since there are no benchmark problems, we have solved a variety of problems. We give here 
the numerical results for an equation with known solution. For 

(T) (?) a(x)=sin  lrx , b(x)=cos , X = I ,  

we have, with ¢(0) = 1, 

( r x )  (1 - z)(x-1)/2(1 + x) -(1+x)/2, ¢(x) = cos T 

P ( x ) = X - i  [ ( 1 - x ) ] - 1  [ ( ? ) ]  - - ~ +  In ~ In cos . 

The quadrature and collocation nodes are zeros of U61 corresponding to n = 31. To display the 
results, we have renamed them xm, rn = 1, 2, 3 , . . . ,  61 from left to right. Table 1 shows the exact 
and computed values of p(x) as well as their difference. Table 2 does the same thing for the 
solution of the homogeneous equation. We note that  the error is less than 10 -6 after only seven 
iterative s teps .  We do not have analytical error estimates and do not know how the error will 
propagate in the solution of nonhomogeneous equations, but the computational evidence seems 
to be positive. 

2 Convergence of Newton s method for a fixed system does not imply the convergence of the numerical computation 
of the solution. 
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Table 1. Exact and computed values of pr,(x) of Example 1. 

xm Exact Sol. p,(xm) 

-0.998716507 

-0.968077117 

--0.897804533 

--0.790775723 

-0.651372460 

-0.485301930 

-0.299363081 

-0.101168271 

0.151427837 

0.347305316 

0.528964073 

0.688966978 

0.820763492 

0.918957849 

0.979529962 

0.998716513 

-1.843714424 

--1.710297555 

--1.576505422 

-1.422092145 

-1.245306445 

--1.048381395 

--0.835703258 

--0.613039862 

--0.330708700 

-0.109947761 

0.099289389 

0.291522629 

0.462816664 

0.611670776 

0.741655611 

0.843714518 

Num. Sol. p,(xm) Error 

-1.843725177 
-1.710298868 

-1.576505894 

-1.422092370 

-1.245306549 

-1.048381391 

-0.835703022 

-0.613037209 

-0.330708175 

-0.109947830 

0.099289272 

0.291522472 

0.462816411 

0.611670260 

0.741653997 

0.843725316 

-0.000010753 

-0.000001313 

-0.000000472 

-0.000000225 

-0.000000104 

0.000000004 

0.000000236 

0.000002652 

0.000000525 

-0.000000070 

-0.000000116 

-0.000000157 

-0.000000253 

-0.000000515 

-0.000001614 

0.000010798 
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Table 2. Exact and computed values of solution ~bn(x). 

Xm Exact Sol. Cn(Xm) Num. Sol. ¢.(xm) Error 

0.050649225 

0.101168380 

0.201298581 

0.299363186 

0.394355919 

0.485302026 

0.571268278 

0.651372543 

0.724792845 

0.790775790 

0.848644305 

0.897804581 

0.937752166 

0.968077144 

0.988468340 

0.998716513 

0.995558461 

0.982350834 

0.931232296 

0.851804588 

0.751665000 

0.639612647 

0.524363336 

0.413479919 

0.312688094 

O.225625213 

0.153963218 

0.097783767 

0.056069550 

0.027199911 

0.009383509 

0.001013465 

0.995557583 

0.982350297 

0.931232027 

0.851804400 

0.751664845 

0.639612505 

0.524363199 

0.413479783 

0.312687956 

0.225625072 

0.153963075 

0.097783621 

0.056069400 

0.027199761 

0.009383368 

0.001013384 

-0.000000878 

-0.000000537 
-0.000000269 

-0.000000188 

-0.000000155 

-0.000000142 

-0.000000137 

-0.000000137 

-0.000000138 

-0.000000140 

-0.000000143 

-0.000000147 

-0.000000150 

-0.000000150 

--0.000000141 

-0.000000080 

6. C O N C L U D I N G  R E M A R K S  

Based on a specific s ingular  representa t ion  of  the  weight  function,  we propose a numerica l  

m e t h o d  for solving CSIE.  Gauss ian  quad ra tu r e  and col locat ion is used to de t e rmine  the  exponen t s  

of  s ingular i ty  at  the  endpoints .  Newton ' s  m e t h o d  has been  found to yield a useful app rox ima t ion  

to  the  exponen t i a l  representa t ion  of  the  weight  function. Even  when HSlder cont inu i ty  condi t ion  

is v io la ted ,  the  numer ica l  scheme appears  to  be effective for problems where  the  solut ion exists.  

Once  we have numer ica l ly  ob ta ined  the  weight  funct ion which de te rmines  the  behavior  of the  

solut ion of  Cauchy  s ingular  integral  equat ion,  one can successfully use it for solving a var ie ty  of  

nonhomogeneous  C S I E  wi th  var iable  coefficients. Moreover,  since the  approach  sugges ted  here 

does not  use complex  analysis explicitly, it may  be possible to  ex tend  it to  mul t id imens iona l  

s ingular  integral  equat ions .  Our  paper  may  be viewed as the  first s tep towards  a real var iable  

t h e o r y  for Cauchy  s ingular  integral  equat ions  at  an e lementa ry  level. 
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